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Abstract - We examine the performance of two on-wafer 
multiline Thou-Reflect-Line (TRL) calibration algorithms: 
the popular multihe TRL algorithm implemented in the 
MultiCalm software package, and B newly implemented 
iterative algorithm designed to give optimal results in the 
presence of messurement noise. We show that the iterative 
algorithm outperforms the MultiCal software in the presence 
of measurement noise, and veri& its uncertainty estimates. 

I. INTRODUCTION 

We compare the multiline Thou-Reflect-Line (TRL) 
vector-network-analyzer calibration algorithm of [l] 
implemented in the MultiCal’ software package’ to a 
multiline TRL calibration algorithm based on the less- 
well-known iterative approach of [Z]. We show that the 
iterative approach of de-embedding on-wafer scattering- 
parameter measurements not only outperforn~ the 
Multi&I algorithm in the presence of measmement noise, 
but also accurately estimates the uncertainty of its results. 

The multiline TRL algorithm of [l] combines 
compactness and speed with a” effective weighting and 
averaging strategy based on Gauss-Markov estimates. The 
algorithm was optimized for on-wafer measurements, and 
has been incorporated into the convenient and popular 
Multi&I software package. 

The iterative approaches of [Z] and [3] offer alternative 
solutions to the multlline TRL problem based on a 
nonlinear least-squares solutions to the conventional VNA 
and six-port calibration problems, respectively. While the 
iterative approaches are slower and less compact than the 
algorithm of [I], they are designed for optimal 
performance in the presence of measmement noise. 

Reference [4] extended the basic approach of [2] to a 
16-term error model and developed error estimates. 
Reference [5] applied the nonlinear leas-squares approach 
to nonlinear vector network analyzers. 

We later adapted the nonlinear least-squares solution of 
[Z] to the characterization of planar coupled transmission 
lines in [6-91. In this case, the least-squares solution was 
obtained “sing the orthogonal distance regression 
algorithm implemented in ODRPACK [lo]. The 

3 Multi&I may be obtained at www.boulder.nist.gov/micro 
* US government publication, not subject to copyright. 
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Fig. 1. The on-wafer calibration problem 

algorithms of [6-g] took advantage of the ability of 
ODRPACK to determine confidence intervals for the 
results directly from measurement data. 

I” this work, we adapt the calibration algorithm of [2] to 
the orthogonal distance regression algorithm of [IO]. As in 
[2]; the new’ algorithm finds a” optimal solution to the 
multiline TRL on-wafer calibration problem in the 
presence of random measmement errors. In addition, the 
new algorithm determines confidence intervals for its 
results. 

In this paper, we demonstrate that this new adaptation of 
[2] outperforms the multiline TRL calibration algorithm of 
[I] in the presence of random measurement errors. We 
also verify the accuracy of its uncertainty estimates. 

II. THE CALIBRATION PROBLEM 

Figure I shows a diagram of the two-tier on-wafer 
measmement problem that we address with the new 
calibration algorithm. The matrices [S,] and [&I contain 
the scattering parameters of two microwave ground-signal- 
ground probe heads to be characterized. The matrix [Sc] 
contains the scattering parameters of the on-wafer 
calibration standard contacted by the probes. The elements 
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of [S$] are the scattering parameters of the cascade of the 
two probe heads with scattering-parameter matrices [S,] 
and [S,] and the calibration standard with scattering- 
parameter matrix [SC] measured by a network analyzer at 
the coaxial reference plane indicated in the figure. Here 
the prime indicates that [&‘I is a measured, rather than a 
calculated, quantity. The objective of the calibration is to 
determine the scattering-parameter matrices [SJ and &I 
of two probe heads from measurements [&‘I of the probes 
and on-wafer calibration standards. 

In the multiline TRL calibration, the on-wafer standards 
consist of a short “thru” line, a set of additional on-wafer 
transmission lines of different lengths, and a symmetric 
“reflect” [ll]. In other on-wafer calibration methods, the 
lines and/or reflect may be replaced by a variety of 
previously characterized terminations 01 other on-wafer 
calibration standards. 

III. THE CALIBRATION ALGORITHM 

The orthogonal distance regression algorithm implemented 
in ODRPACK [lo] finds an optimal solutionfor b of the n 
equations 

Y,=f,(Xj+Fi,B)-Ej3 (1) 

where the subscript i corresponds to the i” of the n 
“observations.” The f; are functions relating the 
measurements y, to the unknown vector p and the 
explanatory variables x,. The E, and 8, are the errors we 
wish to minimize in y, and x,. 

To solve the calibration problem of Fig. 1, we set 
elements of the measurement vectors yz to the real and 
imaginary parts of the elements of the measured scattering- 
parameter matrices [&,,‘I of the two probes and calibration 
standard. The vector p contains the unknowns we wish to 
determine: we assigned elements of J3 to the real and 
imaginary pats of the elements of the scattering-parameter 
matrices [S,] and [&I of the probe heads and, when 
appropriate, the propagation constant y of the on-wafer 
transmission-line standards and the unknown reflection 
coefficients of any symmetric on-wafer reflect standards. 

The vectors x, contain sets of “explanatory” variables for 
each observation. We use them to add previously 
characterized standards to the calibration, setting elements 
of the x, to the real and imaginary parts of the elements of 
the scattering-parameter matrix [&I of the calibration 
standard. This strategy not only allows the algorithm to 
accommodate imperfectly characterized calibration 
standards, but it allows it to be applied to a broad range of 
cabbration problems, including TRL, open-short-load-thou 
(OSLT) and lie-reflect-match (LRM) calibrations. 
However, since the TRL calibration does not rely on 
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Fig. 2. Qualitative measuranent comparison. 

previously characterized calibration standards, there is no 
need for the explanatory variables x, or their associated 
errors 6, and weights wa for that special case. 

The optimal solution for p is found by minimizing 

subject to the constraints in (I), where the matrices w, and 
wa arc weights. In our implementation of the on-wafer 
calibration algorithm, we set w, and wg equal to estimates 
of the inverse of the covariance matrices of errors in y, and 
x, supplied by the user, which improves the estimate of the 
unknowns in the vector p obtained with uniform weighting 
UOI. 

IV. QUALITATTO? MEASUREMENT COMPARISON 

We compared the performance of our new calibration 
algorithm based on orthogonal distance regression to the 
algorithm of [l] implemented in MultiCal. Figure 2 
compares the magnitude of the transmission coefficient of 
the fust probe head estimated by the two algorithms for 
one of our typical on-wafer calibrations. The figure shows 
that the MultiCal estimates are close to the new calibration 
algorithm’s estimates and, in fact, usually lie well within 
the standard uncertainty s as estimated by the new 
algorithm. We obtained similar results for both the 
magnitudes and phases of all of the scattering parameters 
of the probe head. 

V. QUANTITATIVE MEASUREMENT COMPARISON 

We developed a simulator to examine more closely the 
performance of the two algorithms. The simulator began 
with the measured scattering parameters [SI] and [&I of 
the two probe-heads and propagation constant of the lies, 
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Fig. 3. Distribution of the error in the estimates of IS2,/ of the 
two algorithms witho,=6,=0.01 and 0,=6,=0.03, 

as determined from the experiment described in the last 
section. We first used the simulator to generate the exact 
values of [S,] corresponding to each of the standards used 
in the calibration, and verified that the two algorithms did 
solve for [S,] and [&I exactly in the absence of 
measurement errors. 

We then used the simulator to add Gaussian noise with 
standard deviation oR to the real and imaginary parts of the 
reflection coefficients and with standard deviation CY~ to 
the real and imaginary parts of the transmission 
coefficients in [S,l. creating 1000 “noisy” measuwnents 
[S&. Finally, we used MultiCal and the new algorithm to 
estimate the scattering parameters [Sl,] and [Szk] of the 
probes from the 1000 noisy measurements [S,,]. For each 
simulation we set the diagonal elements of the weights wF 
to 6; or 6:, as appropriate. 

Figure 3 shows the distribution of the magnitude errms 
I[SIJ~II-I[S~]~~~ in the estimates of the first err01 box’s 
transmission coefficient we obtained with the two 
algorithms. The figure shows that the new algorithms’s 
error distribution is more concentrated around 0 than 
MultiCal’s Errol distribution. This shows that the new 
algorithm does a better job of estimating the true value of 
IS,,/ than MultiCal does. 

The solid line in the figure shows the estimated error 
distribution generated from the mean of the 1000 
uncertainties predicted by the new algorithm. The two 
distributions show good agreement, giving us greater 
confidence in the ability of the new algorithm to estimate 
its own uncertainty. 

Tables 1-3 investigate the linear errors of the two 
algorithms and will quantify these observations for our 
results at 50 GHz: we obtained similar results at 110 GHz. 

1 0.04 

A. Bias in the Algorithms 

Let AZ represent the differences ofestimates of z from 
the true value of z. The I statistic f =&Is= is the ratio of 
the mean of AZ, which we write as AZ, and the standard 
uncertainty s, of AZ. Large values off indicate significant 
bias in the estimates of z. 

We compiled t statistics to look for bias in MultiCal and 
the new algorithm in Table 1, where z corresponded to 
estimates of elements of [S,] generated by the algorithms. 
Here AZ corresponds to the difference between (a) the 
element of [S,h listed in the fust column of the table 
determined from the noisy measurements [Send and (b) the 
true value of the element in [S,], AZ is the mean of the 
1000 AZ, and sx is the standard uncertainty of AZ. From 
the table we conclude that neither algorithm adds a 
statistically significant bias into its estimates in the 
presence of Gaussian noise.’ 

Table 1. 
The f statistic for the algorithms. ( oR =6, =oT =6,=0.01) 

z(ELw) MultiCal New Algorithm 

R@II) 0.4 0.7 
Rd.%,) 0.02 0.02 

l%ll 1.3 0.8 
Angle s,, 0.2 -0.3 

B. Variance of rhe Algorithms 

To further explore the petiormance of the ,two 
algorithms, we estimated shnc, the uncertainty in the 
MultiCal estimates, and sNEW, the uncertainty in the new 
algorithm’s estimates. We estimated swc and sNEW from the 
standard deviation of the differences of the 1000 noisy 
estimates [S,,] and the true values [S,]. We tabulated our 
estimates of shlc and sNEW, as well as our estimate of 
s&sNEw, in Table 2. 

We also list the 95% lower confidence bound BL for the 
ratio based on our estimate of sMJsNEW in the last column 
of Table 2, calculated from the F distribution with 999 and 
999 degrees of freedom using B, y,,C/(~mw G). 
There is a 95% certainty that the actual value of the ratio is 
greater than BL. 

Table 2 shows that the uncertainty shnc in the MultiCal 
estimates is consistently greater than the uncertainty in the 
estimates determined by the new algorithm. Furthermore, 
the table shows that the new algontbm outperforms 
MultiCal even when it is not supplied with accurate 

’ From the f distribution with 999 degrees of freedom we see that 
a value of 11) > 1.96 is required to conclude with 95% certainty 
that the estimates have a statistically significant bias. 
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estimates (TT of the noise in the measurements. Finally, 
the table indicates that MultiCal has particular difficulty in 
the presence of noise in tmnsmission-coefficient 
measurements. 

Table 2. 
Uncertainty of the two algorithms. ( oR =kR =O.Ol ) 

h4c mEW %d 
(x10-3) (x10-3) SNEW BL 

R&I,) 0.01 0.01 4.96 4.14 1.05 0.997 . .., 
IS211 0.01 0.01 5.50 4.40 1.25 1.19 

Re(Sl,) 0.03 0.01 6.36 5.13 1.24 1.18 
ILlI 0.03 0.01 11.8 7.43 1.58 1.50 

R&Y,,) 0.03 0.03 6.36 5.06 1.26 1.20 
&I 0.03 0.03 11.8 7.32 1.61 1.53 

C. Uncertainty Estimate Generated by the New Algorithm 

The new algorithm uses the residual deviations of the 
measurements from the electrical calibration model to 
estimate the uncertainties in its own results.2 Table 3 
investigates the accuracy of the standard-uncertainty 
estimates s generated by the new algorithm. The table 
compares the actual standard deviation (TA~AL of the 
quantities in the first column of the table to the mean S of 
the standard uncertainty estimates s generated by the new 
algorithm. The nearly identical values of oAmAL and S 
indicate that, on average, the new algorithm accurately 
estimates the uncertainty in its results due to random 
measurement noise. 

The quantity u(s)/? in the last column of Table 3 
represents the ratio of the standard deviation u(s) of the 
estimates s to their mean value S. The small values of 
u(s) / S indicate that the new algorithm estimates the 

uncertainty of its results with reasonable consistency. 

V. CONCLUSION 

We compared a new vector-network-analyzer multiliie 
TRL calibration algorithm based on the iterative approach 
of [Z] with the orthogonal distance regression method of 
[9] to the TRL algorithm of [l] implemented in MultiCal. 
We showed that the new calibration algorithm outperforms 
the MultiCal algorithm in the presence of random 
measurement error and estimates the uncertainty of its 
results with reasonable accuracy. 

2 MultiCal estimates only the relative uncertainty in its results as 
a function of frequency. 

Table 3. 
Accuracy of s. ( oR =6, =o,=(r,=O.Ol ) 

2 (6 [Sri) FACTUAL s u(s)lS 

WSII) 0.0047 0.0046 0.12 
RC%z) 0.0055 0.0054 0.12 

IL 0.0044 0.0044 0.12 
Angle s*, 0.324 0.297 0.30 

SOFt’IYARE 

Software implementing this method can be downloaded 
at http://www.boulder.nist.gov/dylan/. 
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